

Al-based Approaches for Short- and Long-term Sewer Asset Management in Berlin (Germany)

<u>Mathias Riechel</u>¹, Hauke Sonnenberg¹, Alexander Ringe², Nic Lengemann², Elke Eckert², Nicolas Caradot¹, Pascale Rouault¹

¹ Kompetenzzentrum Wasser Berlin; ² Berliner Wasserbetriebe

From defects to deterioration models

Deterioration factors

Filling gaps in sewer asset data

Construction year / pipe age

Very similar problem in data of most cities

Method: Nearest neighbour model + Random Forest machine learning approach under consideration of sewer pipe characteristics and environmental factors

Results: i) Accurate prediction of age for majority of pipes; ii) Symmetric error distribution; iii) All gaps can be closed by combining both approaches

I. Pipe simulator

Goal: Prioritisation of pipes with high probability of defects to support short-term inspection planning

Hotspots at pipe level

Area prioritisation

- Model finds about 4 times more defect pipes than current strategic inspections
- Valuable information for efficient inspection programs

II. Strategy simulator

Goal: Long-term predictions for sewer network condition and strategic rehab planning

Deterioration model

Statistical regression model based on survival curves for different pipe cohorts

Rehabilitation components

Rehab length [km/yr]

Strategy configurator

II. Strategy simulator

Condition distribution for different rehab strategies

B. Renewal strategy (1%/a)

C. Mixed rehab strategy (1,1%/a, renewal + renovation + repairs)

- constant increase in the share of pipes with severe defects (0.3% per year)
- Continuous improvement of condition, but limited by high costs and other constraints
- Short-term condition
 improvement followed by
 deterioration → effect of liners

Model uncertainties

Ranking of uncertainty sources:

Total uncertainties for a do-nothing simulation:

> Assumptions on liners can become major source of uncertainty for a given rehab strategy

Summary and conclusions

- The strategy simulator can support utilities in long-term planning of efficient rehabilitation and investment strategies
- The pipe simulator prioritises pipes according to their defect probability, allowing for more efficient inspection programs
- > Data gaps can be filled with reliable ML-based prediction models
- Important uncertainty sources and countermeasures identified
- Both simulation tools are planned to be tested in other cities

Contact:

mathias.riechel@kompetenz-wasser.de

