Work Package 6 – Smart sensing and monitoring in urban drainage

- Urban drainage systems are key infrastructures in cities, but knowledge about their functioning remains poor due to insufficient and low-quality monitoring
- Three main tasks in WP 6:
- **Task 6.1:** identify and evaluate new sensors and technologies for hydrology and hydraulics, pollutant load monitoring, and UD underground asset inspection

- validated urban drainage monitoring data

Task 6.3: define and evaluate new methods to analyze and interpret urban drainage space and distributed data

Task 6.2: define and evaluate new methods and tools to improve evidence base for reliable and

Task 6.1: Introduction

Urban Drainage Systems are designed to handle different urban water aspects – quantity and quality

Task 6.1: Introduction

•

Better sensors are required for better management

Task 6.1: Sensor selection

Pre-selection 15 sensors

ID	Parameter	Sensor title	Туре	Brand	Model	Proposer 1	rRL_est*
6*	Coliforms (faecal, E. coli, total)	Proteus	Meas.	Proteus	Mult. Par. Water Quality Sensor	UoS	8
7*	Conductivity	LoRaWan Conductivity	Meas.	in-house development	inductive EC probe	EAWAG	4
9	CSO event	LoRaWan CSO detector	Meas.	in-house development	capacitative sensor	EAWAG	4
12*	Discharge	Camera Flow Meter	Meas.	Photrack	Discharge Keeper	EAWAG	5
13	Discharge	Coriolis flowmeter	Meas.	Serv instrumentation		INSA	4
14	Discharge	laser based discharge Meas.	Meas.	Ijinus	ISCO laser	INSA	9
24*	Multi	Submersible spectrometer	Meas.	Go-Sys	ISA	INSA	9
26	Multi	SQUID	Meas.	in-house development	SQUID	EAWAG	4
27*	Multi	Non-contact quality sensor	Meas.	Headwall photonics	Hyperspec MV.X	EAWAG	0
31*	PAH	PAH probe	Meas.	Aquams	TriOS	INSA	9
33*	Pipe mapping	FSB	Meas.	Deltares	FSB	EAWAG	5
38	Rain	Raingauge with Corriolis flowmeter	Meas.	in-house development	NA	INSA	0
43*	Sediment	3d LiDAR sediment mapping	Meas.	Intel RealSense	LiDAR Camera L515	UDC	2
44	Sediment	3d mapping of sediment with SfM	Meas.	in-house development	Photo camera	UDC	4
55	Water quality	Microsensors	Meas.	Unisense	various	UoS	9-1

2)

Final list: 8 sensors

Sensor Number	Sensor name	Measured parameter
1	Proteus	Coliform concentration
2	LPICM	Conductivity
3	DischargeKeeper	Flow
4	ISA spectrometer	Multi – UV-visible absorbance
5	MV.X hyperspectral imager	Multi – VNIR reflectance
6	PAH probe	PAH
7	Pipe Mapping FSB	Pipe mapping
8	3D Lidar Sediment Mapping	Sediment mapping

- + 400-1000 nm (2 nm)
- ✤ IP 66, 67
- Field of view: 10 cm
- Multi parameter
- Tests information
- Tested at five different sites
- Turbidity modeling

Lab tests

Flume tests

Results

Task 6.1: ISA (1)

Sensor description and methods for testing

- UV-vis absorbance (200-735 nm)
- Flexible model
- Adaptable path length

Has been used to measure ammonium

Tested at two independent locations

Results

Task 6.1: Summary and conclusio

	PAH	Proteus	LPICM	ISA	MV.X	DK	PM FSB	Lidar SM
1) TRL	5	5	4	5	4	5	2	5
2) Quality of testing				5	5	5		
 Operational performance 				4	5			
4) Technical performance				4	4			
4a) Range				5	5			
4b) Accuracy				4	4			4

D6.2 in: https://co-udlabs.eu/dissemination/deliverables/

2.	ى `		

