## Transport of contaminants from U.D.S. to urban surfaces during flooding/network surcharge events

11 March 2025 - Improving resilience and sustainability of urban drainage assets

James Shucksmith (University of Sheffield)



# Context: Contamination of flood / U.D.S. exceedance flows



Sampling of urban floodwater reveals a diverse range of pathogens in significant quantities

Can we understand/quantify risks?



Scutt, Sophie (2024) Investigating the public health risk of urban flooding events. PhD thesis, University of Sheffield.

#### Need for Experimental Work

- Engineers commonly use modeling tools to help understand risk
  - But significant uncertainties and unknowns
  - Pollutant behavior, dispersion, many others
- Scale model experiments can provide validation datasets for testing, and increased confidence in model predictions
- Aim : Collect experimental data to help understand the potential transport of contaminants in shallow urban floodwater



1 DHI, Horsholm, Denmark 2 UNESCO-IHE, Delift, The Netherlands 3 Institute for Water Modelling, Dhaka, Bangladesh 4 Division for Risk Assessment and Nutrition, National Food Institute, The Technical University, Denmark

Correspondence Ole Mark, DHI, Agern Allé 5, 2970 Horsholm, Denmark Email: Ole.Mark@dhigroup.com

DOI: 10.1111/jfr3.12182

Abstract

The phenomenon of urban flooding due to rainfall exceeding the design capacity of drainage systems is a global problem and can have significant economic and social consequences. This is even more extreme in developing countries, where poor sanitation still causes a high infectious disease burden and mortal-

## A/B Facility

- 10 years of physical modelling work looking at surface/subsurface interactions
  - Energy Losses, Model Validation, etc.
  - Co-UD Labs activities have focused on pollutant exchange and transport





*M. Rubinato, R. Martins & J. D. Shucksmith (2018) Quantification of energy losses at a surcharging manhole, Urban Water Journal, 15:3, 234-241, DOI: <u>10.1080/1573062X.2018.1424217</u>* 

## Solutes

- Tested different approaches to characterise pollutant transport
- Developed O.A. dataset for modellers to validate numerical methods for quantifying pollutant transport is shallow flows
- Surface velocities also measured using SPIV



Shucksmith et al. (2025) Experiments on contaminant transport from sewer infrastructure within shallow floodwater (under review)



## Surface Spreading of Solute

Surcharge of dyed water into shallow (13 mm, Fr  $\approx$  0.36) surface flow



O.A. dataset and paper currently under review

#### Sediments

Initial experiments to consider the proportion of suspended sediments (between 148  $\leq$  d  $\leq$  458  $\mu m$ ) transferring to the surface flow



their Recovery (https://doi.org/10.5281/zenodo.14187594)

#### Surface Deposition (Ongoing work)

No Surface flow

With Surface flow (approx. 20 mm flow depth)



#### Conclusions

- Sewer surcharge/ overflow events can carry pathogens and other contaminants
- Understanding the transport of these materials is challenging in both field and lab conditions.
  - Transport pathways are sensitive to flow conditions and local geometrical features.
- Work in Co-UD labs has looked at soluble and sediment material transport from a manhole using a experimental scale model and has produced datasets to enable model testing and validation

#### Contributors

Matteo Rubinato, Ricardo Martins, William Addison-Atkinson, Kaeli Brazier, Sophie Scutt, Fabio Muraro, Andy Nichols, Emmanuel Mignot, Louis Gostrix, Clement Fagour